
Department of Information Technology and
Electrical Engineering

Spring Semester 2021

Resonator Networks with Sparse
Codes to Reduce Parameters in

Deep Neural Networks

Bachelor Project

Angéline N. Pouget
apouget@ethz.ch

June 2021

Supervisors: Dr. Abbas Rahimi, abr@zurich.ibm.com
Michael Hersche, herschmi@iis.ee.ethz.ch

Professor: Prof. Dr. Luca Benini, lbenini@iis.ee.ethz.ch

Acknowledgements

I would like to thank my supervisors Dr. Abbas Rahimi and Michael Hersche for their
continuous support and their valuable inputs. From initial explanations about the work-
ings of resonator networks to numerous discussions of possible optimization approaches
to useful tips regarding the presentation and this thesis, you always provided necessary
guidance and enabled the steep learning curve I have been able to experience.

ii

Abstract

High-dimensional computing is an emerging computing approach rooted in neuroscience
and inspired by the understanding that the human brain computes with patterns not
representable by numbers. Operating on high-dimensional vectors, it exploits their quasi-
orthogonality and robustness to store, manipulate and reproduce information. Sparse
high-dimensional vectors are of particular interest since they exhibit the same properties
as their dense counterparts while at the same time being more memory and computation
efficient.

Despite their importance, there so far exists only a small number of relatively little
explored operations that can be performed on sparse vectors without reducing their
sparsity. Moreover, there is no known model that reliably and efficiently factorizes a
product of multiple sparse vectors to uncover its components. Said network could be
used in an abundance of tasks like for instance the mapping of feature vectors to class
labels in convolutional neural networks such as MobileNet-V2.

We introduce a novel weighted superposition operation designed specifically for sparse
high-dimensional vectors as well as a randomized activation sparsification. This allows
us to build a sparse resonator network that succeeds in solving sparse vector factorization
problems with an accuracy of 100%. It does so across a large variety of sparsity levels
and outperforms its dense counterpart in terms of runtime especially for problem sizes
larger than 109. In this scale, the sparse network already converges more than an order
of magnitude faster. We then reduce the parameter count of the MobileNet-V2 classifier
by 99.79% through replacing its fully connected layer with a sparse resonator network.
We achieve this by the use of learnable pooling with shared weights and a segment-wise
spherical loss function that we propose.

iii

Declaration of Originality

I hereby confirm that I am the sole author of the written work here enclosed and that I
have compiled it in my own words. Parts excepted are corrections of form and content
by the supervisor. For a detailed version of the declaration of originality, please refer to
Appendix B.

Angéline N. Pouget,
Zurich, June 2021

iv

Contents

1. Introduction 1

2. Background and Preliminaries 3
2.1. High-Dimensional Computing with Sparse Vectors 3

2.1.1. High-Dimensional Computing . 3
2.1.2. Arithmetic Operations on High-Dimensional Sparse Vectors 4

2.2. Dense Resonator Networks . 5
2.3. MobileNet-V2 . 7
2.4. Fully Connected Layers in CNNs . 8
2.5. Loss Functions . 8

2.5.1. Euclidean Embeddings . 9
2.5.2. Spherical Embeddings . 9

3. First Contribution: Sparse Resonator 11
3.1. Functionality of Sparse Resonator Networks 11

3.1.1. Problem . 11
3.1.2. Initialization . 11
3.1.3. Iterative Factorization Procedure 12

3.2. Implementation . 13
3.3. Results . 14

3.3.1. Attention Vector Convergence . 14
3.3.2. Sparse Resonator Decoding Performance 15
3.3.3. Comparison with the Dense Resonator 17

4. Second Contribution: Replacement of Fully-Connected CNN Layers 19
4.1. Interface . 19

4.1.1. Problem Transformation . 19
4.1.2. Mapping Feature Vector to Resonator Input 21

4.2. Training . 21
4.2.1. Segment-Wise Classification . 22

v

Contents

4.2.2. Overlap Classification . 22
4.3. Inference . 22
4.4. Results . 22

4.4.1. The Choice of Loss Function . 23
4.4.2. The Impact of Weighted Pooling 23
4.4.3. Varying the Sparsity Constant k 24
4.4.4. Increasing the Number of Epochs 24
4.4.5. Segment-Wise and Overlap Classification 25
4.4.6. Lowering the Number of Factors 25
4.4.7. Reduction of the Number of Parameters 26

5. Conclusion and Future Work 27

A. Task Description 29

B. Declaration of Originality 34

vi

List of Figures

2.1. A dense resonator network with V = 3 [1]. 6

3.1. A sparse resonator network with V = 3. 13
3.2. The attention vectors of a decoding with V = 3 and M = 10. 14
3.3. The mean and the standard deviation of the three attention vectors. . . . 15
3.4. Sparse resonator performance with varying sparsity levels k for D = 1024. 16
3.5. Sparse resonator performance with varying sparsity levels k for D = 2048. 16
3.6. Sparse resonator accuracy with varying attention sparsifications a. 17
3.7. The speedup achieved by using a sparse resonator for D = 512 and k = 64. 18

4.1. The task is to find suitable interface layers and resonator configurations. . 19
4.2. An intuitive way of mapping x to z. 21

vii

List of Tables

2.1. MobileNet-V2 Architecture [2]. 7

4.1. Accuracy dependence on the loss function. 23
4.2. Accuracy dependence on the pooling. 24
4.3. Accuracy dependence on choice of sparsity constant k. 24
4.4. Accuracy dependence on the number of training epochs. 24
4.5. Comparison of segment-wise and overlap classification. 25
4.6. Comparison between models with V = 3 and V = 2. 25

viii

Chapter 1
Introduction

Artificial Neural Networks (ANNs) and especially Convolutional Neural Networks (CNNs),
are employed for a wide variety of tasks and have surpassed human expert performance
in various areas [3]. Though loosely based on information processing in biological sys-
tems such as the human brain, most of these models fail to support rule-based reasoning,
a crucial component of human cognition. In addition, they rely heavily on biologi-
cally implausible processes such as for instance back-propagation [4]. High-dimensional
computing is a computation approach rooted in neuroscience that aims to target these
shortcomings by combining high-dimensional vectors with corresponding operations that
together form an algebra. Information stored in randomly drawn high-dimensional quasi-
orthogonal vectors is more robust to local alterations since it is represented redundantly
and holistically instead of being translated to bits and numbers [5]. Along with other
insights, this observation has led to the development of a resonator network which is
essentially a type of recurrent neural network that efficiently factorizes high-dimensional
product vectors [1].

This network is however based on dense high-dimensional vectors despite their sparse
equivalents exhibiting the same remarkable properties while being more memory and
computation efficient. In addition, neurobiology research has suggested that primate
brains also rely on sparse representations of information and hence a resonator network
based on sparse vectors would better approximate the brain’s functioning [6]. One impor-
tant reason why this has so far not been attempted is that there are only few relatively
little explored arithmetic operations on vectors with only a small fraction of non-zeros [7].
In order to be able to solve factorization problems also for sparse binary high-dimensional
vectors, we first present a number of novel operations such as weighted bundling or at-
tention sparsification that can be performed on them without reducing their sparsity.
We then make use of these operations to build a sparse resonator network. When iter-
ating through search spaces larger than 109 in trying to find the underlying factors of

1

1. Introduction

the product vector, our proposed solution significantly outperforms its dense counterpart
with the average number of iterations being more than an order of magnitude lower.

There is a large number of possible applications of this novel network with an important
one being the replacement of fully-connected layers in CNNs used for image classification.
This affine transformation at the end of such a model can have a vast number of param-
eters growing linearly with the number of possible classes, thus requiring increasingly
more resources for storage and computations. It has been shown that by sparsifying or
even fixing this layer during training, one can gain significant memory and computational
benefits while incurring only marginal or no loss of accuracy [8]. Recent discoveries even
suggest that for some applications these layers can be removed entirely without it having
impairing effects on the network’s performance [9]. We now propose to replace the fully
connected layer of a CNN by a resonator network with a fixed set of basis vectors. By
exploring different interfaces between the feature extractor and the resonator network,
various loss functions as well as different ways of initializing the resonator network, we
manage to significantly reduce the number of network parameters at only a small drop
in accuracy. Moreover, we introduce novel ways of mapping the feature vector to max-
imally sparse target vectors representing the corresponding classes. These can also be
used in classification problems with randomly drawn target vectors since such methods
have been attracting increasingly more interest over the past year [10].

The rest of this thesis is organized as follows. Chapter 2 dives into the work that has
already been done in this area and lays the groundwork for what will be explained
afterwards. Chapter 3 focuses on our main contribution, the sparse resonator network,
and discusses its performance especially in comparison to the dense variant. We detail
how this network can be used to replace the fully-connected CNN layers of MobileNet-V2
in Chapter 4. In Chapter 5 we draw conclusions from what we achieved and suggest
further lines of research that could be interesting to delve into.

2

Chapter 2
Background and Preliminaries

2.1. High-Dimensional Computing with Sparse Vectors

2.1.1. High-Dimensional Computing

Connectionism is an approach in the field of cognitive science that aims to understand the
brain’s intellectual abilities by using artificial neural networks. The most widespread and
well-known network used in connectionist modelling is the multilayer perceptron which
relies heavily on processes such as supervised error correction and back-propagation that
are biologically implausible [11]. High-dimensional or hyperdimensional computing de-
scribes more probable cognitive models that do not rely on such processes. They instead
depend on very high-dimensional vectors and their manipulation by operations which
produce new high-dimensional vectors. These models exploit certain properties of high-
dimensional spaces such as redundant encoding of information, holistic representations
and the quasi-orthogonality of randomly chosen vectors. Said characteristics lead to in-
creased robustness and tolerance to error because information is distributed and hence
the meaning of a data item is represented not by a single bit but by a population of
bits [5]. Vector Symbolic Architectures (VSAs) are an example of such high-dimensional
computing models that make use of the algebraic properties of the underlying vector rep-
resentations [4]. VSAs allow one to express data structures holographically in a vector
space of high but fixed dimensionality. The building blocks are random high-dimensional
vectors and data structures built from them are typically vectors with the same dimen-
sion.

There is however a drawback coming with these robust and biologically plausible models,
namely that computing with high-dimensional vectors can increase the space and com-
putation complexity of a model. Hence it is advantageous with regard to both energy
efficiency and memory capacity to use not dense but sparse binary vectors [7].

3

2. Background and Preliminaries

2.1.2. Arithmetic Operations on High-Dimensional Sparse Vectors

In order to compute with sparse binary high-dimensional vectors, we need to first define
the necessary arithmetic operations.

Maximally Sparse Vectors

As proposed in [7], one can divide a binary sparse vector a of length D into k L-bit
segments (with D = kL). In each of these segments, only one single bit location is set to
1 and such a vector is also called maximally sparse. Given two segmented random vectors
with sufficiently large parameters k and L, the inner product between these vectors is
close to zero meaning that the vectors do not resemble each other. Instead of representing
a as a D-dimensional vector where the majority of entries is zero, it is more spatially
and computationally efficient to use the k-dimensional offset vector a′ which stores the
location of the non-zero bit for each segment and hence has entries in [0, L − 1]. An
example for this representation is shown in Equation 2.1.

a =

0
0
1

1
0
0

→ a′ =

(
2

0

)
with D = 6, k = 2, L = 3 (2.1)

Binding and Bundling Operations

The binding operation ⊗ takes two vectors as inputs and outputs a vector that resembles
none of the inputs. For two maximally sparse binary random vectors a and b it is defined
as the segment-wise cyclic shift of the elements in one vector (for example b) where the
number of shifts in each segment is defined by the location of the set bit in the other
vector (in this case a). An example for this procedure with two input vectors is shown
in Equation 2.2.

a⊗ b =

0
0
1

1
0
0

⊗

0
1
0

0
1
0

 =

1
0
0

0
1
0

 = e (2.2)

If we use the offset notation for vectors a and b this operation can be written as shown
in Equation 2.3.

4

2. Background and Preliminaries

a′ ⊗ b′ =

(
2

0

)
⊗
(
1

1

)
= (a′ + b′) mod L =

(
3

1

)
mod L =

(
0

1

)
= e′ (2.3)

The binding operation commutes for maximally sparse vectors, i.e., a ⊗ b = b ⊗ a.
Moreover, the operation preserves distance, left-distributes over addition and is invertible.
This method is very robust since erroneous bits or noise in a particular segment only
affect the binding result in that segment [5]. The inverse binding � can be written as
seen in Equation 2.4. It is important to mention that this operation does not commute
in contrast to its dense correspondence, the Hadamard product.

e′ � b′ =

(
0

1

)
�
(
1

1

)
= (e′ − b′) mod L =

(
−1
0

)
mod L =

(
2

0

)
= a′ (2.4)

The bundling operation denoted by ⊕ is based on the subset sum operation introduced
in [7] and takes two (or more) maximally sparse vectors as inputs. It computes the
element-wise integer sum of these vectors, implying that the resulting vector resembles
(in terms of the inner product) all input vectors. In order to restore the desired sparsity
level after a bundling operation, we need to perform subsequent thinning. We achieve
this by performing integer summation on the input vector and consecutively assigning
value 1 to the maximizing element of each segment while setting all other entries to 0. If
multiple locations have the same value, one of them is chosen at random. The bundling
operation for three input vectors a, b and c including the intermediate stage before the
thinning operation is shown in Equation 2.5. Note that in the lower segment, one of the
three bits has been chosen at random during the thinning process and hence d is not
defined unambiguously which makes the bundling operation irreversible.

a⊕ b⊕ c =

0
0
1

1
0
0

⊕

0
1
0

0
1
0

⊕

0
0
1

0
0
1

 =

0
1
2

1
1
1

thinning−−−−−→

0
0
1

0
1
0

 = d (2.5)

2.2. Dense Resonator Networks

In order to read out the components of a VSA-encoded data structure, the vector en-
coding must be decomposed into the building blocks it consists of. The decoding of a
multiplicative composition is essentially a factorization problem [1]. Resonator networks
are a type of recurrent neural network that rely on superposition to search through the
combinatoric solution space without enumerating all possible factorizations explicitly.
This allows them to solve the decoding problem efficiently. Given a high-dimensional

5

2. Background and Preliminaries

vector as input, a resonator network iteratively searches through many potential factor-
izations in parallel until a set of factors is found that agrees with the input. Solutions
then emerge as stable fixed points in the network dynamic [1].

All entities in a VSA are represented as high-dimensional vectors in the same vector
space. The basic building blocks are chosen randomly and the set of vectors representing
specific items is stored in a codebook which is a matrix of dimension D ×M where D is
the vector dimension and M is the number of such building blocks.

We are given a dense bipolar composite vector x

x = ai � bj � ch (2.6)

where ai, bj and ch are drawn from randomly generated codebooks A = {a0, . . . ,aM−1},
B = {b0, . . . , bM−1} and C = {c0, . . . , cM−1} respectively and � represents a Hadamard
product. The factorization problem now is to find i, j and h without exhaustively
iterating through all possible vector combinations. The resonator network can be used in
principle to solve this problem for composite vectors based on the binding of any number
V of codebook vectors.

Its functionality is based on first estimating possible factors â(0), b̂(0) and ĉ(0) as the
superposition of all possible codebook vectors. Since the Hadamard product is invertible,
given for example b̂(0) and ĉ(0), the updated version of the third factor, namely â(1),
can be inferred. This inference process is however noisy and hence the estimate ân(1) has
to be cleaned by projecting it onto the span of codebook A. This computes a measure
of similarity between the estimate and each element in the codebook, quantifying the
probability that this element is the sought-after factor. The updated estimate is then
formed by the superposition of all codebook items weighted by this similarity metric.
This produces a better guess for each of the factors and the inference can be repeated
with better estimates which reduces the noise [1].

Figure 2.1.: A dense resonator network with V = 3 [1].

The dense resonator network is depicted in Figure 2.1 where t() stands for a thresholding
function needed to bipolarize the estimates. This is essential since the network is designed
for operation on dense bipolar vectors but the weighted superposition results in integer
vector elements.

6

2. Background and Preliminaries

2.3. MobileNet-V2

MobileNet-V2 is an efficient neural network architecture designed specifically for the use
in resource-constrained environments such as handheld devices or embedded systems [2].
It is used mainly for image classification, object detection and other computer vision
applications.

The model makes use of depthwise separable convolutions which replace each convolution
operation with a factorized version that splits it into two separate layers. The first of
these layers is a depthwise convolution which equals a spatial convolution performed
independently over each input channel. It is followed by a pointwise convolution which is
essentially a 1 × 1 convolution that changes the channel space dimensionality [12]. The
replacement of standard convolutional layers by depthwise separable convolution layers
in MobileNet-V2 leads to a computational cost that is 8 to 9 times smaller at only a small
reduction in accuracy [13]. Additionally, MobileNet-V2 introduces linear bottleneck layers
which prevent nonlinearities from distorting important information. Lastly, based on the
intuition that these bottlenecks contain all the necessary information, shortcuts between
the bottlenecks are used. The latter are also called inverted residuals and they aim to
improve the ability of the gradient to propagate across several layers without leading to
large increases in memory requirements [2].

The feature extractor of the MobileNet-V2 architecture is displayed in Table 2.1 where
each line describes a sequence of identical layers repeated n times. All spatial convolutions
use 3× 3 kernels and the first layer of each sequence has stride s whereas all others use
stride 1. All layers in one sequence have c output channels [2].

Input Operator t c n s Parameters
2242 × 3 conv2d - 32 1 2 992
1122 × 32 bottleneck 1 16 1 1 992
1122 × 16 bottleneck 6 24 2 2 11, 913
562 × 24 bottleneck 6 32 3 2 42, 000
282 × 32 bottleneck 6 64 4 2 189, 760
142 × 64 bottleneck 6 96 3 1 309, 888
142 × 96 bottleneck 6 160 3 2 802, 368
72 × 160 bottleneck 6 320 1 1 478, 400
72 × 320 conv2d 1x1 - 1280 1 1 409, 600
72 × 1280 avgpool 7x7 - - 1 - 0

1× 1× 1280 conv2d 1x1 - k - 1, 280k

Table 2.1.: MobileNet-V2 Architecture [2].

7

2. Background and Preliminaries

2.4. Fully Connected Layers in CNNs

The MobileNet-V2 architecture has significantly less parameters than similar well-known
CNN models which is due largely to a reduction of the number of parameters in the
feature extractor. What has not changed, however, is the classifier and hence the pa-
rameters of the fully connected layer account for 37% of the overall parameters for 1000
classes and even more for larger problem sizes [9]. It has been shown that replacing the
fully connected layers by a fixed classifier leads to significant computational and memory
benefits with little or no loss of accuracy, depending on the application [8]. It has even
been proposed to remove the classifier entirely which equals replacing the fully connected
layers by a fixed identity matrix and has resulted in minor losses in classification perfor-
mance [9]. The output of the global average pooling layer is in this case used directly to
compute classification scores.

2.5. Loss Functions

The softmax activation function is used by a majority of neural network models designed
to solve multi-class classification problems to map the output of the last fully connected
layer to a probabilistic categorical distribution. It is common practice to then apply the
cross-entropy or log loss to tune the parameters and optimize the performance of these
models. CNNs trained with the softmax cross-entropy loss have achieved state-of-the-art
performance on an abundance of tasks [14]. For certain applications, however, it is benefi-
cial to take into account spherical loss functions that make use of the spherical embedding
geometry which changes the similarity structure of the embedding space compared to the
standard Euclidean embedding geometry [15]. The reason for this is that the geometry
determines the mapping from a deep embedding to a class posterior and hence can be
of crucial importance with regard to model performance. In contrast to Euclidean loss
functions, spherical loss functions are based only on the similarity between two vectors
and not on their magnitude. This can be beneficial if we want to maximize the overlap
between any two output and target vectors in our training data as we do not prioritize
differently dependent on the target vector magnitude [15].

In this work, we make use of different classification losses that compute the cross-entropy
between a predicted class distribution and a one-hot target distribution. They lie in the
Euclidean and in the spherical space respectively which is why we will here summarize
these two embedding geometries.

8

2. Background and Preliminaries

2.5.1. Euclidean Embeddings

The well-known dot-product softmax [16] maps to the Euclidean space and has the form

p(y|z) =
exp(wT

y z)∑
j exp(w

T
j z)

(2.7)

where z is a deep embedding and wj are the weights corresponding to class j. The
cross-entropy loss based on this function is then given by

L(y|z) = − log(p(y|z)) = − log

(
exp(wT

y z)∑
j exp(w

T
j z)

)
(2.8)

and the losses are generally averaged across observations for each minibatch.

2.5.2. Spherical Embeddings

The best-known loss based on spherical embeddings uses cosine distance to compute a
probability measure [17]. The cosine embedding is defined as

p(y|z) = exp(s cos(θy))∑
j exp(s cos(θj)

=
exp

(
s

wT
y z

||wT
y ||·||z||

)
∑

j exp

(
s

wT
j z

||wT
j ||·||z||

) (2.9)

where the parameter s > 0 is a trainable inverse temperature parameter and θj is the
angle between z andwj as is obvious from the second equality. Notice that in comparison
to the standard softmax function, only the directions of the weight and embedding vectors
are taken into account and not their magnitude.

A second spherical probability measure that is derived from the cosine embedding is the
ArcFace function [18]. It adds an additive angular margin hyperparameter m > 0 that
penalizes the true class and is given by

p(y|z) = exp(s cos(θy +m))

exp(s cos(θy +m)) +
∑

j 6=y exp(s cos(θy))
. (2.10)

The third and last spherical probability measure introduced here is the CosFace embed-
ding which is very similar to the ArcFace embedding but defines the decision margin in
cosine space rather than in angle space [19]. With m > 0 as before, it can be written
as

p(y|z) = exp(s(cos(θy)−m))

exp(s(cos(θy)−m)) +
∑

j 6=y exp(s cos(θy))
. (2.11)

9

2. Background and Preliminaries

The loss function for any of these spherical embeddings is as before given by

L(y|z) = − log(p(y|z)) (2.12)

which is minimized during training.

10

Chapter 3
First Contribution: Sparse Resonator

3.1. Functionality of Sparse Resonator Networks

Both sparse and dense resonators aim to efficiently solve the factorization problems in
the high-dimensional vector space detailed in Section 2.2. By developing a sparse version
which is still closely related to the dense model, we reduce both the spatial and com-
putational complexity of the network while still exploiting the remarkable properties of
high-dimensional randomly generated vectors to solve the factorization problem. In order
to achieve this, we have to adapt the initial bundling of the three component vectors,
the initialization of â, b̂ and ĉ as well as the factorization procedure which is why this
section will be split into three parts.

3.1.1. Problem

We are given a D-dimensional composite vector x that is the product of three maximally
sparse D-dimensional vectors ai, bj and ch with only k nonzero entries each. We can
write this as

x = ai ⊗ bj ⊗ ch (3.1)

where ai, bj and ch are drawn from codebooksA = {a0, . . . ,aM−1}, B = {b0, . . . , bM−1}
and C = {c0, . . . , cM−1} respectively. The problem is to find i, j and h given x and the
codebooks A, B and C by solving the factorization problem.

3.1.2. Initialization

The current estimates for each factor are given by â, b̂ and ĉ and they are initialized
to the bundling (including the subsequent thinning) of the vectors in the corresponding

11

3. First Contribution: Sparse Resonator

codebook.

â(0) = a1 ⊕ · · · ⊕ aM , b̂(0) = b1 ⊕ · · · ⊕ bM , ĉ(0) = c1 ⊕ · · · ⊕ cM (3.2)

3.1.3. Iterative Factorization Procedure

The binding operation is invertible and hence given x, and the estimates b̂(0) and ĉ(0)
for instance, we can infer an updated estimate ân(1).

ân(1) = x� b̂(0)� ĉ(0) (3.3)

However, this estimate has to be cleaned because it can be very noisy and does not
necessarily lie in the span of codebook A. The reason for this is that b̂(0) and ĉ(0) are
given by the superposition of M codebook vectors each and they therefore represent all
possible combinations of these vectors at the same time. This is on the one hand very
powerful as it allows us to quickly converge towards more probable estimations but it also
introduces a lot of noise since only one of these combinations is the one that was initially
used to create x. We achieve the denoising by computing the overlap (inner product)
between the noisy estimate ân(1) and the codebook matrix A which gives us a weight
vector w′A. This weight vector which is also called attention vector is then sparsified to
focus on solutions that seem more probable in the current state of the resonator. As can
be seen in Equation 3.4, we add a vector r ∈ RD

[0,1) to w′A before the sparsification. This
randomization is very important because the vectorw′A is an integer vector and hence the
sparsification is ambiguous if there are multiple entries with the same value. This is not
taken into account if we use a standard topk operation without first adding r. We then
sparsify the weight vector by preserving the a largest elements in w′A+r, whereas all the
other entries are set to zero. The choice of the attention vector sparsification constant a
depends on the problem dimension D and the codebook vector vector sparsity constant
k. This attention sparsification prevents codebook vectors that are very dissimilar to
ân(1) from introducing additional noise.

AT ân(1) + r = w′A + r
sparsify−−−−→ wA ∈ RM (3.4)

Given these attentions wA, we now perform weighted bundling over the codebook vectors
with subsequent thinning which yields the denoised prediction â(1) as shown in Equa-
tion 3.5. The use of weighted bundling instead of the normal bundling introduced in
Section 2.1.2 allows us to emphasize certain vectors in the bundling and give less weight
to others. This influences the random selection during the thinning process. We can
therefore influence how similar the resulting vector is to a component vector by assigning
that component vector a smaller or larger weight.

wA[0]a0 ⊕ · · · ⊕w′A[M − 1]aM−1
thinning−−−−−→ â(1) (3.5)

12

3. First Contribution: Sparse Resonator

This procedure can then be repeated with the updated estimates â(1), b̂(1) and ĉ(1)
until the estimates converge to single codebook vectors. The entire iterative factorization
procedure is also shown in Figure 3.1 where ⊕ stands for the weighted bundling with
subsequent thinning.

Figure 3.1.: A sparse resonator network with V = 3.

3.2. Implementation

The sparse resonator network was implemented using the deep learning library PyTorch
[20]. All operations are performed on offset vectors which reduces the runtime by more
than an order of magnitude. The only operation that cannot be executed on offset vectors
is the weighted bundling over the codebook vectors. However, this has no significant
influence on the runtime since the materialized codebook only needs to be computed
and stored once, during initialization. This reduces the bundling to a simple matrix
multiplication with subsequent thinning; the resulting vector is transformed back to
offset notation using an argmax operation.

The iterative factorization procedure is repeated until the estimations converge to a fixed
point where the states do not change anymore between two subsequent iterations.

â(t) = â(t− 1) ∧ b̂(t) = b̂(t− 1) ∧ ĉ(t) = ĉ(t− 1) (3.6)

In some cases this scenario is never reached which is why the number of iterations is
limited by a problem size dependent maximum [21].

max_it = max(2000,
MV

1000
) (3.7)

The resonator network factorization procedure is executed on GPUs in batches of size
256.

13

3. First Contribution: Sparse Resonator

3.3. Results

The sparse resonator network efficiently factorizes high-dimensional maximally sparse
vectors. The attention vectors successfully converge to one-hot vectors indicating the
correct indices i, j and h of the codebook vectors underlying x. The resonator’s perfor-
mance depends on the choice of D, k and a which will be explored in the following. In
the last part, we will compare the performance of the sparse resonator network to the
performance of the dense resonator network.

3.3.1. Attention Vector Convergence

As is the case for resonator networks in general, the system seems to cluelessly look for the
right vectors until seemingly out of nowhere, the correct solution appears. This aimless
search as well as the sudden convergence can be observed by examining the attention
vectors wA, wB and wC as displayed in Figure 3.2. In this case, the correct solution
therefore is i = 6, j = 9 and h = 8. This solution then resonates with the network
dynamics which reinforces the correct choice.

Figure 3.2.: The attention vectors of a decoding with V = 3 and M = 10.

There is no mathematical guarantee for this convergence but given input parameters and
problem sizes that are within the resonator’s operational capacity, the network empiri-
cally finds the right solution. This convergence can also be seen in Figure 3.3. During
iteration 0, all attention vector entries are approximately 0 because the predictions are
still very inaccurate and hence the decoded vectors â(0), b̂(0) and ĉ(0) do not yet re-
semble any of the codebook vectors (meaning that these predictions are approximately
orthogonal to all codebook vectors). This leads to both the mean and the standard devi-
ation being very small. As soon as the convergence takes place, both the mean and the
standard deviation increase because one entry is now approximately 1 whereas all others
are still close to 0.

14

3. First Contribution: Sparse Resonator

Figure 3.3.: The mean and the standard deviation of the three attention vectors.

3.3.2. Sparse Resonator Decoding Performance

The decoding accuracy and runtime of the resonator network are highly dependent on
the choice of input parameters, especially on the choice of vector dimension D, vector
sparsity k and the attention vector sparsification constant a. Given a suitable choice of
these three parameters, however, the decoding accuracy stays consistently at 1.0 even
for problem sizes MV > 109. We were not able to determine at what problem size the
accuracy starts to decrease due to computational limitations. It is important to mention
that the drop occuring at problem size 106 which can be observed in nearly all following
diagrams is due to the maximum number of iterations being too low for that region.
Hence this does not represent a failure of the sparse resonator network and could be
overcome easily by increasing the maximum number of iterations.

Dependence of the Resonator Performance on D and k

As has been mentioned before and is clearly visible in Figure 3.4 and Figure 3.5, the
resonator accuracy is highly dependent on the choice of k given certain parameters D and
a. The lower the parameter k, the more information is lost during the thinning processes
and hence it becomes more difficult for the network to solve the factorization problem.
The reason for this is that for a large parameter k, information is stored redundantly
and hence even if the estimation for a small number of the k segments might be wrong,
the network is able to find the right decoding by relying on the information stored in the
remaining segments. Hence the attention vector indicates the right direction more clearly
which leads to faster and more precise convergence. This phenomenon is especially visible
in Figure 3.4a in the domain where MV = 106 because there the number of iterations is
too low and we can see that for smaller k this has a much more pronounced effect on the
accuracy than for larger k.

This does however not necessarily mean that larger k lead to faster convergence for all
dimensions D and across all problem sizes as can be seen very clearly in Figure 3.4b and

15

3. First Contribution: Sparse Resonator

(a) Resonator Accuracy (b) Number of Iterations

Figure 3.4.: Sparse resonator performance with varying sparsity levels k for D = 1024.

(a) Resonator Accuracy (b) Number of Iterations

Figure 3.5.: Sparse resonator performance with varying sparsity levels k for D = 2048.

Figure 3.5b. It appears that for larger vector dimensions like for example D = 2048,
less sparse codebook vectors lead to a faster convergence, whereas the opposite holds
true for smaller dimensions such as D = 1024. This is also supported by the results
discussed in Section 3.3.3 which are based on a vector dimension D = 512. For large
problem sizes and D = 1024 we should hence choose the smallest k that still leads to a
decoding accuracy of 1.0 to minimize the number of iterations whereas for D = 2048 it
is better to choose a larger parameter k. To summarize, there is a trade-off between the
desired sparsity level, the resonator performance in terms of decoding accuracy and the
resonator performance with regard to runtime.

In general, the accuracy is higher and the number of iterations is lower across all problem
sizes for D = 2048 when compared to D = 1024. This makes sense intuitively, since there
is more redundancy for D = 2048 and hence information can still be recovered correctly
even when a larger number of segments have been permuted.

16

3. First Contribution: Sparse Resonator

Dependence of the Resonator Performance on a

The performance is also highly dependent on the attention vector sparsification constant
a as can be seen in Figure 3.6. This is most explicitly visible when looking at the pink
line which represents the resonator accuracy if the attention vector is not sparsified at all.
Setting a too low or too high results in a drop of accuracy which is observed across a range

Figure 3.6.: Sparse resonator accuracy with varying attention sparsifications a.

of different combinations of D and k. Hence we have to carefully fine-tune this number
for a given choice of the other parameters to optimize the network performance. The
reason for this phenomenon might be that if a is too low, we might accidentally filter
out the right component during the attention sparsification and if a is too high, very
dissimilar codebook vectors are able to re-introduce a certain amount of noise during the
weighted bundling. In contrast to the choice of k, the selection of a has no influence on
the number of iterations and hence can be chosen independently to optimize the decoding
accuracy.

3.3.3. Comparison with the Dense Resonator

By sparsifying the resonator network we were able to decrease its memory usage but we
are also interested in the influence this sparsification has on factors such as the average
number of iterations which correlates linearly with the runtime and the computational
complexity. When comparing the sparse resonator network to its dense counterpart, it
can be observed that especially for problem sizesMV > 107, the sparse resonator network
converges notably faster. This difference in the number of iterations becomes even larger
as the problem size increases and for MV = 109 the sparse resonator network is already
an order of magnitude faster than the dense version as can be seen in Figure 3.7. For
smaller problem sizes on the other hand, the sparse resonator network is slightly less

17

3. First Contribution: Sparse Resonator

Figure 3.7.: The speedup achieved by using a sparse resonator for D = 512 and k = 64.

efficient with approximately twice the number of iterations until convergence is reached.
This is however of less importance as convergence is very fast in these domains for both
the sparse and the dense resonator as clearly shown in Figure 3.4b and Figure 3.5b. For
larger problem sizes on the other hand, the number of iterations increases exponentially
and hence using a sparse resonator network to solve these problems can have a significant
impact on the algorithm runtime.

Given a large enough maximum number of iterations, the accuracy stays consistently
at 1.0 for both networks in the examined problem size range and does therefore not
differentiate the two versions.

18

Chapter 4
Second Contribution: Replacement of
Fully-Connected CNN Layers

As the title of this thesis already implies, sparse resonator networks can be used to
reduce parameters of deep neural networks by replacing the fully-connected layers of
CNNs. These layers map the feature vector x shown in Figure 4.1 to the correct class
label. In the case of MobileNet-V2, the fully connected layer has 1.28 · 106 parameters
and is therefore very memory-intensive. We aim to solve the task of mapping x to a
class label y ∈ [0, 999] by using a resonator network which hence increases the space
efficiency of the model without reducing the accuracy significantly. As will be elaborated
on below, we explored several different interfaces between the resonator network and the
convolutional layers of MobileNet-V2 as well as multiple loss functions and an array of
sparsity constants k. All models were trained, tested and evaluated within the PyTorch
framework [20] on the ImageNet-1000 dataset [22].

Figure 4.1.: The task is to find suitable interface layers and resonator configurations.

4.1. Interface

4.1.1. Problem Transformation

To be able to replace the classification layers by a resonator network, we must first
transform the underlying problem from mapping a feature vector x to a label y ∈ N[0,999]

19

4. Second Contribution: Replacement of Fully-Connected CNN Layers

to solving a factorization problem. This can be done in multiple ways of which we will
in the following explain two.

Resonator Network with Three Factors

We can transform the problem by defining a resonator network with V = 3 and M = 10
which is able to efficiently and correctly factorize exactly MV = 1000 different combi-
nations of codebook vectors. Assuming that our codebooks are again denoted by A, B
and C, we are given an input vector y′ = ai ⊗ bj ⊗ ch and we aim to find i, j and h
which is exactly the problem defined in Section 3.1.1 and solved by our sparse resonator
network.

We can translate a class label y to three indices (i, j, h) by looking at all three digits of
y separately and mapping them to i, j and h respectively.

i = by/100c (4.1)
j = b(y mod 100)/10c (4.2)
h = y mod 10 (4.3)

This transformation is invertible with the inversion being the following.

y = i ∗ 100 + j ∗ 10 + h (4.4)

The task is now to find an efficient mapping from x ∈ R320×7×7 to the offset vectors
representing the suitable resonator input y′ = ai ⊗ bj ⊗ ch ∈ Nk

[0,L). This vector can
naturally also be represented as a maximally sparse vector y ∈ ND

[0,1]. By mapping the
output x to a prediction y′ that can then be accurately factorized by the resonator
network, we replace the fully connected layer and hence reduce the parameter count of
the neural network by more than 1/3. We have limited ourselves to D = 1280 and hence,
given a sparsity constant k, L is defined unambiguously.

Resonator Network with Two Factors

Alternatively, we can define a network with V = 2 and M = 32 and 24 null labels (due
to the MV = 1024 possible combinations). Given y′ = ai ⊗ bj , the problem is now to
find i and j with i, j ∈ [0, 32).

We can transform y to two indices (i, j) for the network with V = 2 as follows.

i = by/32c (4.5)
j = y mod 32 (4.6)

20

4. Second Contribution: Replacement of Fully-Connected CNN Layers

This transformation is naturally invertible as well.

y = i ∗ 32 + j (4.7)

The task is in this case to find an efficient mapping from x ∈ R320×7×7 to the offset
vectors representing the correct resonator input y′ = ai ⊗ bj ∈ Nk

[0,L).

4.1.2. Mapping Feature Vector to Resonator Input

An intuitive way of mapping x to z, which should then be trained to equal y, is shown
in Figure 4.2. The dimension reduction through pooling can be achieved for example
by applying average pooling over the signal x and hence reducing the 7 × 7 features
per channel to 1. A second possibility is to perform weighted pooling with a weight
vector wp ∈ R49 shared across all channels. This leads to a better performance at a
negligible increase in the number of parameters which will be discussed more in depth
in Section 4.4. More sophisticated solutions than the one presented here (e.g. weighted
pooling where the weights are not shared across all channels) were not examined in detail
since they require a larger number of parameters which would defeat the purpose of using
a resonator network to reduce the parameter count.

Figure 4.2.: An intuitive way of mapping x to z.

4.2. Training

We have tried both different loss functions (cross-entropy loss, binary cross-entropy loss,
cosine loss, ArcFace loss, CosFace loss) as well as two different ways of passing the
vectors z and y′ to these functions which will be referred to as segment-wise classification
and overlap classification. Since the initial models trained with cross-entropy loss or
cosine loss have outperformed the final prediction accuracy of those trained with binary
cross-entropy loss, ArcFace loss or CosFace loss by at least 20%, the latter have not
been explored thoroughly and will therefore not be discussed in depth. All models were
trained using stochastic gradient descent with an initial learning rate of 0.04 and Nesterov
momentum as described in [23] with a momentum factor of 4·10−5. To adjust the learning
rate during training, we used the cosine scheduler proposed in [24]. The batch size was
set to 256 and the number of training epochs ranged between 100 and 400.

21

4. Second Contribution: Replacement of Fully-Connected CNN Layers

4.2.1. Segment-Wise Classification

For the segment-wise classification, we transform the problem from training the D-
dimensional vector z to equal the correct resonator input vector y to training the k
segments of z to correctly indicate which of the L bits should be set to 1 whereas all
others are set to 0. This essentially corresponds to splitting the problem into k subprob-
lems where each one of these subproblems is a classification problem with L classes. The
correct labels for these k subproblems are stored in the offset vector y′. We train this
model using either the softmax cross-entropy loss or the cosine loss, both explained in
Section 2.5.

4.2.2. Overlap Classification

The overlap classification makes use of the matrixO ∈ R1280×1000 which stores the vectors
y corresponding to each of the 1000 possible classes. We then maximize the overlap (as
measured by the inner product) between vectors z and the correct y by computing the
inner products between z and y for all of the 1000 classes, mapping these to probability
space and applying either cross-entropy loss or cosine loss. We hence assume that the
vector given by OTz ∈ R1000 stores the probabilities of the image belonging to each of
the 1000 classes which allows us to directly apply one of the mentioned loss functions.

4.3. Inference

During inference, we set the maximizing entry for each of the segments in z to 1 whereas
all others are set to 0 which gives us a k-sparse vector that we then input into the
resonator. Using the sparse resonator gives us the possibility to fine-tune the model by
carefully choosing parameters k and a. To gain a better understanding of the performance
of different models, we monitor the segment-wise classification accuracy averaged across
all subproblems, the overlap accuracy as well as the resonator accuracy. The overlap
accuracy is defined as the top-1 accuracy achieved by assuming that the maximizing
entry in OTz indicates the correct class label. The resonator accuracy is the top-1
accuracy if we consider the class label predicted by the resonator network.

4.4. Results

As a first baseline to compare all our results to we utilize the performance of the identity
classifier which is essentially a 1-sparse segment-wise classifier introduced in [9]. This
corresponds to not using any classifier at all and simply interpreting z directly as a prob-
ability distribution over 1280 classes where 280 of them are null classes. Trained with
cosine loss for 100 epochs, this model achieves a top-1 accuracy of 70.8%. The second

22

4. Second Contribution: Replacement of Fully-Connected CNN Layers

baseline is the accuracy of the originally proposed MobileNet-V2 model including the
fully connected layer which equals 72.0% [2]. None of our proposed solutions has sur-
passed either one of these two accuracies, however, the performance of our best models is
comparable to them. Moreover, we believe that our additions such as the weighted pool-
ing could help increase the accuracy of these models and are hence valuable independent
of whether or not they are used in combination with a sparse resonator network. The
same holds for the segment-wise classification which can also be used in connection with
randomly drawn sparse target vectors [10]. Lastly, our model is scalable, meaning that
the number of classes can be increased significantly without it having an impact on the
number of parameters. This is not the case for the other two versions, since the identity
classifier can be used for at most 1280 classes and the classifier based on a fully-connected
layer would come with 1280 new parameters per additional class.

Unless otherwise indicated, the results below were achieved with the model based on
V = 3 and M = 10.

4.4.1. The Choice of Loss Function

Softmax cross-entropy loss and cosine loss performed superior to all other tested loss
functions by a large margin. As shown in Table 4.1, using a spherical embedding is
better suited to solve the problem at hand than mapping to Euclidean space. Both
models were trained for 100 epochs with k = 80 and use standard average pooling. The
entries in Table 4.1 denote the top-1 classification accuracies based on the resonator
decoding of z (Resonator), the overlap of z with the vectors in matrix O (Overlap) and
the averaged segment-wise classification accuracies over the k segments (Segment-wise).
Given the correct input y, the sparse resonator network used would have been able to
find the corresponding class with 100% accuracy.

Model Resonator Overlap Segment-wise
Softmax CEL 63.2% 63.9% 64.5%
Cosine Loss 66.5% 66.7% 68.1%

Table 4.1.: Accuracy dependence on the loss function.

4.4.2. The Impact of Weighted Pooling

Using weighted pooling instead of standard average pooling increases the number of pa-
rameters by 49 which is negligible compared to the total number of parameters of a deep
neural network. However, it does increase the model accuracy by around 0.3% indepen-
dent of whether we consider the resonator, the overlap or the segment-wise accuracy as
displayed in Table 4.2. This is quite significant given that the network has only been

23

4. Second Contribution: Replacement of Fully-Connected CNN Layers

slightly altered. Both models were trained for 100 epochs with k = 80 and cosine loss.

Model Resonator Overlap Segment-wise
Average Pooling 66.5% 66.7% 68.1%
Weighted Pooling 66.8% 67.1% 68.4%

Table 4.2.: Accuracy dependence on the pooling.

4.4.3. Varying the Sparsity Constant k

As discussed previously, the sparsity constant k has to be selected carefully since it
has a significant impact on the resonator performance. Table 4.3 shows the results of
models with weighted pooling that were trained for 200 epochs with cosine loss. The

Model Resonator Overlap Segment-wise
k = 40 60.6% 69.7% 70.1%
k = 64 68.3% 69.1% 70.1%
k = 80 68.2% 68.6% 70.1%
k = 128 67.4% 67.5% 70.3%
k = 160 66.4% 66.8% 70.4%

Table 4.3.: Accuracy dependence on choice of sparsity constant k.

performance is optimal for k = 64 because for smaller k the resonator does no longer
work properly (even with the correct input y the decoding accuracy is not 100% for
k = 40 and D = 1280) and for larger k, the prediction z seems to be less similar to the
target vector y as is visible in the declining overlap accuracy.

4.4.4. Increasing the Number of Epochs

For deep neural networks it generally holds true that an increase of the number of epochs
and hence the use of more computing power increases the model accuracy. The same
can also be observed for our application as is demonstrated in Table 4.4. The model has
sparsity k = 64, uses weighted pooling and was trained with the segment-wise cosine
loss.

Model Resonator Overlap Segment-wise
200 epochs 68.3% 69.1% 70.1%
400 epochs 68.8% 70.1% 71.1%

Table 4.4.: Accuracy dependence on the number of training epochs.

24

4. Second Contribution: Replacement of Fully-Connected CNN Layers

4.4.5. Segment-Wise and Overlap Classification

So far, all considered models have been trained by segment-wise application of the loss
function. However, as can be clearly seen in Table 4.5, if we want to maximize the overlap
accuracy which is the prediction based on the inner product of z with the vectors in
matrix O, it is beneficial to already take this into account during training. In contrast
to maximizing the resonator accuracy this is possible since it only consists of a matrix
multiplication which can of course be inverted during back-propagation. The models were
trained for 200 epochs with k = 64 and cosine loss. Since overlap classification does not

Model Resonator Overlap Segment-wise
Segment-wise 68.3% 69.1% 70.1%

Overlap < 5% 70.4% −

Table 4.5.: Comparison of segment-wise and overlap classification.

perform well in terms of the resonator accuracy, it should only be used either in models
that do not rely on the resonator at all or in combination with a second loss function
applied segment-wise. This latter option would even introduce a new hyperparameter
weighting the different losses which could be carefully tuned to optimize performance.

4.4.6. Lowering the Number of Factors

We have introduced two possible solutions in Section 4.1.1, one with V = 3 and M = 10
and the other one with V = 2 andM = 32. The comparison of these two solutions yields
that in terms of the resonator accuracy, the model based on V = 2 clearly outperforms
the other one. This might be due to the fact that this model is still able to correctly
factorize problems with 100% accuracy for sparser vectors (e.g. k = 40) given the correct
input vector. An interesting observation clearly visible in Table 4.6 is that for V = 3

Model Resonator Overlap Segment-wise
V = 3, k = 40 60.6% 69.7% 70.1%
V = 3, k = 64 68.3% 69.1% 70.1%
V = 2, k = 40 69.1% 69.5% 69.8%
V = 2, k = 64 69.0% 69.2% 70.1%

Table 4.6.: Comparison between models with V = 3 and V = 2.

there are significant differences between the three accuracy measures (they have a range
of 9.5% for k = 40 and a range of 1.8% for k = 64). These are significantly smaller for
V = 2 (they have a range of 0.7% for k = 40 and a range of 1.1% for k = 64).

25

4. Second Contribution: Replacement of Fully-Connected CNN Layers

4.4.7. Reduction of the Number of Parameters

Our main goal for this second contribution was to achieve a significant reduction of
the number of parameters in the MobileNet-V2 classifier. The fully-connected layer as
presented in [2] has 1.28·106 weights that are tuned during training and have to be stored
thereafter. Our models replaced this layer by either 30 (for V = 3) or 64 (for V = 2)
codebook vectors in addition to 49 weights used for the weighted pooling. In general the
codebook vectors have dimension D = 1280 each but since we can store them in offset
vector notation, they only have dimension k. Hence, the best performing model in terms
of the resonator accuracy (V = 2 and k = 40) has 49 + 40 · 64 = 2609 parameters. This
corresponds to a classifier parameter reduction of 99.79%.

26

Chapter 5
Conclusion and Future Work

In this thesis, we presented a sparse resonator network that is able to correctly factorize
sparse high-dimensional vectors across a large range of problem sizes. This is due mainly
to the randomized attention sparsification of the weight vector we developed, which is
then used during the bundling process to update our estimates. The analysis of our
results has shown that in general, there is a sparsity optimum which maximizes the
accuracy while still converging in a reasonably small number of iterations. This could be
investigated further by refining the operations such that the resonator network performs
well for even sparser vectors, further reducing memory requirements and increasing the
network efficiency. In addition, it would be interesting to examine the problem size at
which the network accuracy starts to decrease from 1.0, especially in comparison with
the dense resonator network. This could yield additional information on a suitable choice
of hyperparameters since now several models have an accuracy that stays consistently at
1.0 across all problem sizes and are hence difficult to compare.

We then replaced the fully-connected layers of a CNN by this network to reduce the
number of parameters of deep neural networks. In the process, we proposed several ways
of mapping feature vectors to maximally sparse target vectors and explored multiple loss
functions, detecting that a cosine probability space embedding is best suited to solve the
task at hand. As our proposed network has not been able to outperform the network that
uses an identity matrix classifier, an obvious topic that would need to be investigated
further is whether this really is the optimal solution to the fixed classifier problem. It
would also be interesting to repeat our experiments with a resonator network able to
deal with even sparser vectors since this seems to benefit from a higher segment-wise
classification accuracy.

Other lines of research that could be delved into in the near future are of course the
numerous other applications of sparse resonator networks. Given that we have developed

27

5. Conclusion and Future Work

and introduced such a network for the first time, there are now opportunities for sparse
high-dimensional computing that were previously not possible.

28

Appendix A
Task Description

29

Bachelor Thesis at the Department of
Information Technology and Electrical Engineering

Spring Semester 2021

Angéline Pouget

Resonator Networks with Sparse Codes to Reduce
Parameters in Deep Neural Networks

June 2, 2021

Advisors: Michael Hersche, ETZ J 76.2, herschmi@iis.ee.ethz.ch
Abbas Rahimi, IBM Research Zurich, abr@zurich.ibm.com

Handout: March 1, 2021
Due: June 7, 2021

The final report will be submitted in electronic format. All copies remain property of
the Integrated Systems Laboratory.

1

1 Introduction

Neural networks are commonly used as models for classification for a wide variety of tasks.
Typically, an affine transformation is placed at the end of such models, yielding a per-
class value used for classification. This classifier can have a vast number of parameters,
which grows linearly with the number of possible classes, thus requiring increasingly more
resources for storage and computations. The fully-connected layers are still commonly
used as classification layers in various neural network architectures, transforming from the
dimension of network features D to the number of required class categories C. Therefore,
each classification model must hold D × C number of trainable parameters that grows in
a linear manner with the number of classes (i.e., C) [1]. However, it has been shown that
the fully-connected classification layer does not to be trained but can be fixed during
training. In the extreme case, the fully-connected layer can be as simple as a Hadamard
matrix [2].

Randomly-drawn distributed high-dimensional vectors form a quasi-orthogonal basis. It
has been shown that a resonator network can efficiently factorize any product vector
generated from such basis [3, 4]. As a result, the fully-connected layer of deep neural
networks can be replace by a resonator network with a fixed basis. Current resonator
networks are designed to operate on dense high-dimensional vectors; however, deep neural
networks do not necessarily emit dense but sparse vectors [1].

2 Project Description

In this thesis, you explore resonator networks with high-dimensional sparse codes and
their application in deep neural networks.

Task I: Design a resonator with sparse vectors

You start familiarizing with the concept of high-dimensional computing and resonator
networks. As a fist step, you re-design the resonator network for k-sparse block codes [5,
6].

• Exploring various attention and summation/thresholding functions.

• Compare the operational capacity of your sparse resonator network to its dense
variant.

2

Task II: Substituting fully connected layer in MobileNetV2 with sparse
resonator networks

• Exploring various interfaces to the resonator networks, loss functions, and opti-
mizations.

• Bonus: evaluating the performance and benefits on other networks.

3 Project Realization

3.1 Meetings

Weekly meetings and reports must be held. The exact time and location of these meetings
will be determined within the first week of the project in order to fit the student’s and
the assistant’s schedule. These meetings will be used to evaluate the status and progress
of the project. Besides these regular meetings, additional meetings can be organized to
address urgent issues as well.

3.2 Report

Documentation is an important and often overlooked aspect of engineering. One final
report has to be completed within this project. The common language of engineering
is de facto English. Therefore, the final report of the work is preferred to be written
in English. Any form of word processing software is allowed for writing the reports,
nevertheless, the use of LATEX with Tgif1 or any other vector drawing software (for block
diagrams) is strongly encouraged by the IIS staff.

Final Report The final report has to be presented at the end of the project and a digital
copy need to be handed in. Note that this task description is part of your report and
has to be attached to your final report.

3.3 Presentation

There will be a presentation (15 min for the semester thesis, and 20 min for the MS thesis
presentation followed by 5 min Q&A) at the end of this project in order to present your
results to a wider audience. The exact date will be determined towards the end of the
work.

1See: http://bourbon.usc.edu:8001/tgif/index.html and http://www.dz.ee.ethz.ch/en/
information/how-to/drawing-schematics.html.

3

References

[1] Z. Qian, T. L. Hayes, K. Kafle, and C. Kanan, “Do we need fully connected output
layers in convolutional networks?” arXiv preprint arXiv:2004.13587, 2020.

[2] E. Hoffer, I. Hubara, and D. Soudry, “Fix your classifier: the marginal value of training
the last weight layer,” arXiv preprint arXiv:1801.04540, 2018.

[3] E. P. Frady, S. J. Kent, B. A. Olshausen, and F. T. Sommer, “Resonator networks,
1: An efficient solution for factoring high-dimensional, distributed representations of
data structures,” Neural computation, vol. 32, no. 12, pp. 2311–2331, 2020.

[4] S. J. Kent, E. P. Frady, F. T. Sommer, and B. A. Olshausen, “Resonator networks, 2:
Factorization performance and capacity compared to optimization-based methods,”
Neural computation, vol. 32, no. 12, pp. 2332–2388, 2020.

[5] M. Laiho, J. H. Poikonen, P. Kanerva, and E. Lehtonen, “High-dimensional comput-
ing with sparse vectors,” in 2015 IEEE Biomedical Circuits and Systems Conference
(BioCAS). IEEE, 2015, pp. 1–4.

[6] E. P. Frady, D. Kleyko, and F. T. Sommer, “Variable binding for sparse distributed
representations: Theory and applications,” arXiv preprint arXiv:2009.06734, 2020.

Zurich, June 2, 2021 Prof. Dr. Luca Benini

4

Appendix B
Declaration of Originality

34

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.

− I have not manipulated any data.

− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Resonator Networks with Sparse Codes to Reduce Parameters in Deep Neural Networks

Pouget Angéline

Zurich, 06.06.2021

Bibliography

[1] E. P. Frady, S. J. Kent, B. A. Olshausen, and F. T. Sommer, “Resonator networks,
1: An efficient solution for factoring high-dimensional, distributed representations
of data structures,” Neural computation, vol. 32, no. 12, pp. 2311–2331, 2020.

[2] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 4510–4520.

[3] C. Nagpal and S. R. Dubey, “A performance evaluation of convolutional neural
networks for face anti spoofing,” in 2019 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2019, pp. 1–8.

[4] R. W. Gayler, “Vector symbolic architectures answer jackendoff’s challenges for cog-
nitive neuroscience,” arXiv preprint cs/0412059, 2004.

[5] P. Kanerva, “Hyperdimensional computing: An introduction to computing in dis-
tributed representation with high-dimensional random vectors,” Cognitive computa-
tion, vol. 1, no. 2, pp. 139–159, 2009.

[6] B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Current opinion
in neurobiology, vol. 14, no. 4, pp. 481–487, 2004.

[7] M. Laiho, J. H. Poikonen, P. Kanerva, and E. Lehtonen, “High-dimensional comput-
ing with sparse vectors,” in 2015 IEEE Biomedical Circuits and Systems Conference
(BioCAS). IEEE, 2015, pp. 1–4.

[8] E. Hoffer, I. Hubara, and D. Soudry, “Fix your classifier: the marginal value of
training the last weight layer,” arXiv preprint arXiv:1801.04540, 2018.

[9] Z. Qian, T. L. Hayes, K. Kafle, and C. Kanan, “Do we need fully connected output
layers in convolutional networks?” arXiv preprint arXiv:2004.13587, 2020.

36

Bibliography

[10] G.-L. Shalev, G. Shalev, and J. Keshet, “On randomized classification layers and
their implications in natural language generation,” in Proceedings of the Third Work-
shop on Multimodal Artificial Intelligence, 2021, pp. 6–11.

[11] S. D. Levy and R. Gayler, “Vector symbolic architectures: A new building material
for artificial general intelligence,” in Proceedings of the 2008 conference on artificial
general intelligence 2008: Proceedings of the first AGI conference, 2008, pp. 414–418.

[12] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 1251–1258.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mo-
bile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[15] T. R. Scott, A. C. Gallagher, and M. C. Mozer, “von mises–fisher loss: An
exploration of embedding geometries for supervised learning,” arXiv preprint
arXiv:2103.15718, 2021.

[16] J. S. Bridle, “Probabilistic interpretation of feedforward classification network out-
puts, with relationships to statistical pattern recognition,” in Neurocomputing.
Springer, 1990, pp. 227–236.

[17] A. Zhai and H.-Y. Wu, “Classification is a strong baseline for deep metric learning,”
arXiv preprint arXiv:1811.12649, 2018.

[18] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for
deep face recognition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 4690–4699.

[19] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu, “Cosface:
Large margin cosine loss for deep face recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 5265–5274.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance
deep learning library,” arXiv preprint arXiv:1912.01703, 2019.

[21] S. J. Kent, E. P. Frady, F. T. Sommer, and B. A. Olshausen, “Resonator networks, 2:
Factorization performance and capacity compared to optimization-based methods,”
Neural computation, vol. 32, no. 12, pp. 2332–2388, 2020.

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE conference on computer vision and
pattern recognition. Ieee, 2009, pp. 248–255.

37

http://www.deeplearningbook.org

Bibliography

[23] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initial-
ization and momentum in deep learning,” in International conference on machine
learning. PMLR, 2013, pp. 1139–1147.

[24] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,”
arXiv preprint arXiv:1608.03983, 2016.

[25] X. Zhang, R. Zhao, Y. Qiao, X. Wang, and H. Li, “Adacos: Adaptively scaling
cosine logits for effectively learning deep face representations,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.
10 823–10 832.

38

	Introduction
	Background and Preliminaries
	High-Dimensional Computing with Sparse Vectors
	High-Dimensional Computing
	Arithmetic Operations on High-Dimensional Sparse Vectors

	Dense Resonator Networks
	MobileNet-V2
	Fully Connected Layers in CNNs
	Loss Functions
	Euclidean Embeddings
	Spherical Embeddings

	First Contribution: Sparse Resonator
	Functionality of Sparse Resonator Networks
	Problem
	Initialization
	Iterative Factorization Procedure

	Implementation
	Results
	Attention Vector Convergence
	Sparse Resonator Decoding Performance
	Comparison with the Dense Resonator

	Second Contribution: Replacement of Fully-Connected CNN Layers
	Interface
	Problem Transformation
	Mapping Feature Vector to Resonator Input

	Training
	Segment-Wise Classification
	Overlap Classification

	Inference
	Results
	The Choice of Loss Function
	The Impact of Weighted Pooling
	Varying the Sparsity Constant k
	Increasing the Number of Epochs
	Segment-Wise and Overlap Classification
	Lowering the Number of Factors
	Reduction of the Number of Parameters

	Conclusion and Future Work
	Task Description
	Declaration of Originality

